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Abstract 
Sepsis remains a leading cause of morbidity and mortality in post-surgical patients, with early identification paramount for 

improving outcomes. Traditional diagnostic methods relying on systemic inflammatory response syndrome (SIRS) criteria and 

clinical suspicion are often non-specific and delayed. This review synthesizes current evidence on the role of biomarkers and 

artificial intelligence (AI)-based monitoring systems for the early detection of sepsis in this high-risk cohort. We comprehensively 

evaluate established biomarkers like C-reactive protein (CRP), procalcitonin (PCT), and lactate, alongside promising novel 

biomarkers including presepsin, soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), interleukin-6 (IL-6), and cell-

free DNA (cfDNA). Furthermore, we examine the emergence of AI and machine learning (ML) algorithms that integrate multi-

parametric data (vital signs, laboratory results, electronic health record data) to generate real-time predictive risk scores. Evidence 

indicates that while PCT offers superior specificity to CRP for bacterial sepsis, combinations of biomarkers and serial 

measurements enhance diagnostic accuracy. AI-based systems demonstrate significant potential for early warning, often 

outperforming conventional track-and-trigger systems by identifying subtle physiological deviations preceding clinical 

deterioration. Key challenges include biomarker validation in surgical cohorts, integration of AI tools into clinical workflows, and 

demonstrating improved patient outcomes through prospective intervention studies. The synergistic use of advanced biomarkers 

and intelligent monitoring systems represents a promising frontier for achieving earlier sepsis diagnosis and intervention in the 

post-surgical setting, ultimately reducing mortality and healthcare costs. 
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INTRODUCTION 
Surgical interventions, while often life-saving, 

inherently carry the risk of post-operative 

complications, among which sepsis stands as a 

formidable adversary (Angus & van der Poll, 

2013). Sepsis, defined as life-threatening organ 

dysfunction caused by a dysregulated host 

response to infection (Singer et al., 2016), 

disproportionately affects surgical patients. This 

vulnerability stems from factors such as the 

breach of natural barriers, tissue trauma, 

ischemia-reperfusion injury, 

immunosuppression, and the frequent presence 

of indwelling devices (Moore et al., 2017). The 

incidence of post-surgical sepsis varies 

significantly based on the type and complexity of 

surgery, patient comorbidities, and underlying 

pathology, but it consistently correlates with 

devastating consequences: prolonged intensive 

care unit (ICU) and hospital stays, increased 

healthcare resource utilization, and alarmingly 

high mortality rates, often exceeding 30% in 

severe cases (Fleischmann et al., 2016; Rhee et 

al., 2017). 

 

The timely initiation of appropriate therapy 

encompassing rapid source control, appropriate 

antimicrobials, and hemodynamic resuscitation is 

the cornerstone of sepsis management and is 

unequivocally linked to survival (Rhodes et al., 

2017). However, early diagnosis in the post-

surgical period presents unique and significant 

challenges. The physiological stress response to 

surgery itself mimics the cardinal signs of sepsis, 

including tachycardia, tachypnea, leukocytosis, 
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and fever (Nakamura et al., 2019). This overlap 

creates a diagnostic quagmire, often leading to 

delayed recognition or, conversely, unnecessary 

antibiotic use for non-infectious systemic 

inflammation. Conventional diagnostic 

approaches primarily rely on the Systemic 

Inflammatory Response Syndrome (SIRS) 

criteria, which lack specificity, and clinician 

suspicion, which can be subjective and variable 

(Vincent et al., 2013). Blood cultures, the 

diagnostic gold standard for infection, suffer from 

low sensitivity, significant time delays (often 24-

72 hours), and frequent contamination, 

particularly in complex post-surgical scenarios 

(Lamy et al., 2016). 

 

Consequently, there is an urgent and unmet need 

for more precise, rapid, and objective tools to 

differentiate between the expected post-

operative inflammatory state and incipient 

sepsis. This review critically examines two 

rapidly evolving and highly promising avenues: 

the utilization of novel and established 

biomarkers and the implementation of artificial 

intelligence (AI)-based predictive monitoring 

systems. We explore their individual and 

combined potential to revolutionize the early 

identification of sepsis in post-surgical patients, 

thereby enabling timely intervention and 

improving clinical outcomes. 

 

THE BURDEN OF POST-SURGICAL 

SEPSIS 
Post-surgical sepsis represents a significant 

public health burden. Global estimates suggest 

sepsis affects millions annually, with surgical 

patients constituting a substantial proportion 

(Rudd et al., 2020). Data from large databases 

consistently show that abdominal, cardiothoracic, 

and vascular surgeries carry particularly high 

risks (Moore et al., 2017). The economic burden 

is staggering, involving costs associated with 

extended ICU stays, complex treatments 

(antibiotics, vasopressors, renal replacement 

therapy), rehabilitation, and long-term sequelae 

in survivors (Paoli et al., 2018). Beyond the 

financial cost, sepsis inflicts profound human 

suffering, including physical disability, cognitive 

impairment, psychological distress (e.g., post-

sepsis syndrome), and increased long-term 

mortality (Prescott & Angus, 2018). 

 

Mortality rates escalate dramatically with delays 

in recognition and treatment. Studies consistently 

demonstrate that each hour of delay in 

administering appropriate antibiotics after the 

onset of septic shock increases mortality by an 

average of 7.6% (Kumar et al., 2006). In the post-

surgical context, where the baseline 

inflammatory state obscures early signs, these 

delays can be catastrophic. Furthermore, failure 

to achieve timely source control, such as drainage 

of an abscess or revision of an infected 

anastomosis, is independently associated with 

mortality (Solomkin et al., 2010). Therefore, 

strategies enabling earlier detection are not 

merely desirable but essential for improving 

survival and reducing morbidity. 

 

TRADITIONAL DIAGNOSTIC 

METHODS AND THEIR LIMITATIONS 
The diagnosis of sepsis in post-surgical patients 

has historically relied on a combination of clinical 

assessment, laboratory findings, and 

microbiological data, often framed within criteria 

like SIRS or Sepsis-3 definitions. 

• SIRS Criteria: Widely used for decades, SIRS 

requires the presence of at least two of: 

tachycardia (heart rate >90 bpm), tachypnea 

(respiratory rate >20/min or PaCO2 <32 

mmHg), fever (>38°C) or hypothermia 

(<36°C), and leukocytosis (>12,000/µL), 

leukopenia (<4,000/µL), or >10% immature 

bands (Bone et al., 1992). However, SIRS 

criteria are highly sensitive but notoriously 

non-specific in the post-operative period, as 

surgery itself reliably induces SIRS 

(Nakamura et al., 2019). This leads to a high 

rate of false positives, triggering unnecessary 

investigations and antibiotic prescriptions. 

• Clinical Suspicion: Clinician judgment, based 

on experience and assessment of factors like 

wound appearance, purulent drainage, 

mental status changes, and hemodynamic 

instability, remains crucial. However, this is 

inherently subjective, prone to cognitive 

biases, and can be delayed, especially in 

patients with complex presentations or 
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underlying comorbidities (Henning et al., 

2019). 

• Blood and Site Cultures: Culture of blood, 

urine, respiratory secretions, or suspected 

surgical site infections remains the gold 

standard for confirming infection and 

identifying pathogens. However, limitations 

are profound: sensitivity can be as low as 30-

50% in sepsis, results take 24-72 hours, prior 

antibiotic administration significantly 

reduces yield, and contamination rates 

(especially for blood cultures) are non-trivial 

(Lamy et al., 2016). In surgical site infections, 

cultures may only become positive days after 

clinical signs manifest. 

• Imaging: Radiological investigations (X-ray, 

ultrasound, CT scan) are vital for identifying 

potential sources of infection (e.g., abscess, 

anastomotic leak, pneumonia) but often 

require clinical suspicion to trigger them and 

may not show definitive changes in very early 

infection. 

 

The fundamental challenge lies in 

the "diagnostic window" the critical period 

between the onset of the dysregulated host 

response and the manifestation of unequivocal 

clinical signs. During this window, traditional 

methods often fail, while early therapeutic 

intervention could be most effective (Seymour et 

al., 2016). This gap underscores the need for 

novel diagnostic approaches. 

 

BIOMARKERS FOR EARLY SEPSIS 

IDENTIFICATION 
Biomarkers, measurable indicators of biological 

processes or states, offer the potential for more 

objective and earlier detection of sepsis than 

clinical signs alone. An ideal sepsis biomarker for 

post-surgical patients would be highly sensitive 

and specific, rise rapidly after infection onset, 

differentiate infection from sterile inflammation, 

be readily measurable, provide prognostic 

information, and guide therapy. No single 

biomarker perfectly meets all criteria, but several 

show significant utility. 

 

 

 

Established Biomarkers 

• C-Reactive Protein (CRP): An acute-phase 

protein synthesized by the liver in response 

to IL-6. CRP levels rise within 4-6 hours of 

inflammation, peak at 36-50 hours, and have 

a long half-life (19 hours) (Póvoa, 2002). Its 

strengths include widespread availability and 

low cost. However, CRP is markedly elevated 

by surgical trauma itself, typically peaking 

around post-operative day 2-3, making it 

difficult to interpret in the immediate post-op 

period (Anderson et al., 2018). Serial 

measurements showing a secondary rise after 

an initial post-operative peak can be more 

suggestive of infection. Its specificity for 

bacterial infection versus non-infectious 

inflammation is limited. 

• Procalcitonin (PCT): A pro-hormone of 

calcitonin, normally produced by thyroid C-

cells. During bacterial infection, numerous 

tissues (liver, lung, kidney, adipocytes) can 

produce PCT under the influence of microbial 

toxins (e.g., endotoxin) and cytokines (TNF-α, 
IL-6) (Becker et al., 2004). Key advantages 

include: 

o Faster Kinetics: Levels rise within 3-

6 hours of infection, peak at 12-48 

hours, and have a shorter half-life 

(24h) than CRP, allowing for more 

rapid assessment of response to 

therapy (Schuetz et al., 2011). 

o Better Specificity: PCT shows a more 

pronounced response to bacterial 

infection compared to viral infections 

or non-infectious inflammation, 

including uncomplicated surgery 

(Wacker et al., 2013). While surgery 

causes an increase, the magnitude is 

generally lower than in sepsis, and 

levels typically decline rapidly after 

uncomplicated procedures. 

o Prognostic Value: Higher PCT levels 

correlate with sepsis severity and 

mortality (Clec'h et al., 2004). 

o Guiding Antibiotic Therapy: PCT 

algorithms have been successfully 

used to guide initiation and duration 

of antibiotic therapy, reducing 

unnecessary exposure without 

compromising outcomes (de Jong et 
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al., 2016). 

Limitations include cost (higher than 

CRP), potential elevation in severe 

trauma, burns, and some non-

infectious conditions (e.g., cardiogenic 

shock), and variable performance in 

localized infections or 

immunocompromised patients. 

• Lactate: Hyperlactatemia (serum lactate >2 

mmol/L) is a marker of tissue hypoperfusion 

and cellular dysfunction, a hallmark of septic 

shock. Elevated lactate is a key component of 

the Sepsis-3 definition of septic shock and is 

strongly associated with mortality (Casserly 

et al., 2015). While not specific for infection, a 

rising lactate in a post-surgical patient with 

signs of inflammation is a critical red flag for 

severe sepsis requiring immediate 

resuscitation (Rhodes et al., 2017). Serial 

lactate measurements are valuable for 

assessing response to therapy. 

 

Novel and Emerging Biomarkers 

Research continues to identify biomarkers with 

improved performance characteristics: 

• Presepsin (sCD14-ST): A soluble fragment 

of CD14, a receptor for lipopolysaccharide 

(LPS)-LPS binding protein complexes on 

monocytes/macrophages. Presepsin levels 

rise very rapidly (within 1-2 hours) after 

bacterial infection and may offer even earlier 

detection than PCT (Endo et al., 2012). 

Several studies suggest it performs well in 

differentiating sepsis from non-infectious 

SIRS in ICU and post-surgical patients, 

potentially with superior diagnostic accuracy 

to PCT in some settings (Wu et al., 2014; 

Carpio et al., 2015). Availability of reliable 

assays is increasing. 

• Soluble Triggering Receptor Expressed on 

Myeloid Cells-1 (sTREM-1): TREM-1 is an 

activating receptor expressed on neutrophils 

and monocytes that amplifies the 

inflammatory response to bacteria and fungi. 

Its soluble form (sTREM-1) is shed into body 

fluids during infection. Elevated levels in 

plasma, bronchoalveolar lavage fluid, or other 

sites show promise in differentiating bacterial 

infection from non-infectious inflammation, 

including in post-surgical cohorts (Gibot et al., 

2004; Determann et al., 2006). However, 

standardization of assays and cut-off values 

needs refinement. 

• Interleukin-6 (IL-6): A key pro-

inflammatory cytokine central to the acute 

phase response. IL-6 levels rise very early 

(within 1-2 hours) in response to infection or 

tissue injury (Reinhart et al., 2002). While 

extremely sensitive, its specificity is low due 

to elevation in any significant inflammatory 

state, including major surgery. Its short half-

life (~1 hour) means it can be useful for 

monitoring response to therapy very rapidly. 

It may have value as part of a multi-marker 

panel. 

• Cell-Free DNA (cfDNA): DNA fragments 

released into the bloodstream from dying 

cells (apoptosis, necrosis). Total cfDNA levels 

increase in various critical illnesses, including 

sepsis (Dwivedi et al., 2012). More 

intriguingly, circulating microbial cfDNA 

(mcfDNA) detected via next-generation 

sequencing (NGS) can potentially identify 

pathogens much faster than culture, without 

prior antibiotic exposure hindering detection 

(Blauwkamp et al., 2019). While cost and 

complexity are current barriers, this 

represents a paradigm shift towards culture-

independent diagnosis. 

• MicroRNAs (miRNAs): Small non-coding 

RNAs involved in post-transcriptional gene 

regulation. Specific miRNA expression 

profiles are altered in sepsis and may serve as 

diagnostic and prognostic biomarkers (Wang 

et al., 2012). Their stability in circulation 

makes them attractive candidates, though 

clinical translation requires validation of 

specific panels and standardized assays. 

• Pancreatic Stone Protein 

(PSP)/Regenerating Protein 1 (Reg1): This 

protein has gained attention as a potential 

early marker of sepsis and organ dysfunction. 

Studies suggest it may rise earlier than CRP 

and PCT in some infection scenarios, 

including post-surgery, and correlates with 

severity (Keel et al., 2009; Que et al., 2013). 

Further validation in surgical populations is 

needed. 

• CD64 (Neutrophil CD64 Index): The Fcγ 
receptor I (CD64) expression on neutrophils 



  

 

 

Journal of Clinical Medicine and Surgical Advance                                                            Vol:1| Iss: 1| 2025 

APEC Publisher, 2025    27 
 

increases rapidly upon activation by bacterial 

infection. Flow cytometry-based 

measurement of the neutrophil CD64 index 

shows high sensitivity and specificity for 

bacterial sepsis, including in differentiating 

post-surgical inflammation from infection 

(Davis et al., 2017). Requires specialized 

equipment and expertise. 

 

Table 1: Comparison of Key Biomarkers for Sepsis Detection in Post-Surgical Patients 

Biomarker Biological Role Kinetic

s (Rise 

Time) 

Key Advantages Key Limitations Utility in 

Post-

Surgical 

Setting 

CRP Acute phase protein 

(Liver, IL-6 driven) 

4-6h, 

Peak 

36-50h 

Cheap, widely 

available, good 

negative predictive 

value 

Low specificity, slow 

decline, elevated by 

surgery itself 

Limited for 

early 

diagnosis; 

serial 

measurement

s (secondary 

rise) more 

useful 

PCT Pro-hormone (Multiple 

tissues, Bacterial 

toxin/cytokine driven) 

3-6h, 

Peak 

12-48h 

Better specificity for 

bacterial infection 

than CRP, faster 

kinetics, guides 

antibiotic therapy 

Cost, elevated in 

severe 

trauma/burns/cardia

c shock 

Good; helps 

differentiate 

infection 

from sterile 

post-op 

inflammation; 

serial 

monitoring 

valuable 

Lactate Marker of tissue 

hypoperfusion/anaerob

ic metabolism 

Minutes

-hours 

Critical marker of 

severity/septic 

shock, strong 

prognostic value, 

guides resuscitation 

Not specific for 

infection, elevated in 

other 

shocks/hypoxia 

Essential for 

identifying 

high-

risk/septic 

shock 

patients 

Presepsin Soluble CD14 fragment 

(Monocyte activation) 

1-2h Very rapid rise, 

potentially superior 

early accuracy to 

PCT 

Cost, newer assay, 

less extensive 

validation than PCT 

Promising for 

very early 

detection 

sTREM-1 Soluble receptor 

(Myeloid cell activation) 

3-6h Good specificity for 

bacterial infection 

Assay 

standardization 

issues, less widely 

available 

Shows 

promise; 

needs more 

validation 

IL-6 Pro-inflammatory 

cytokine 

1-2h Very rapid rise, 

short half-life 

(monitors therapy) 

Very low specificity 

(elevated in any 

inflammation) 

Limited as 

single 

marker; 

potential in 

panels 

cfDNA/mcfDN

A 

Fragments from dying 

host/microbial cells 

Rapid 

(hours) 

mcfDNA: Culture-

independent 

pathogen detection, 

fast 

Cost, complexity 

(NGS), total cfDNA 

non-specific 

Emerging; 

high potential 

for pathogen 

ID 

CD64 Index Fcγ receptor on 
neutrophils 

(upregulated by 

4-6h High 

sensitivity/specificit

y for bacterial 

Requires flow 

cytometry, expertise 

Good 

potential; 

practical 
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infection) infection adoption 

barrier 

PSP/Reg1 Pancreatic protein (role 

in immune response?) 

Early 

(within 

hours?) 

May rise earlier 

than CRP/PCT in 

some studies 

Less well-established 

mechanism, 

validation ongoing 

Emerging; 

requires 

more data 

 

Clinical Application and Interpretation 

The effective use of biomarkers in post-surgical 

sepsis requires strategic implementation: 

• Combination is Key: Relying on a single 

biomarker is insufficient. Combining 

biomarkers (e.g., PCT + Lactate, PCT + Clinical 

Score) significantly improves diagnostic 

accuracy compared to individual markers or 

clinical assessment alone (Ljungström et al., 

2017). Panels incorporating novel markers 

(e.g., Presepsin + PCT) are under active 

investigation. 

• Serial Measurements: Static values are less 

informative than trends. Serial 

measurements, particularly in high-risk 

patients, are essential for detecting an early 

rise suggestive of infection or monitoring 

response to therapy (Schuetz et al., 2011). 

The trajectory (e.g., PCT decreasing vs. 

plateauing/increasing) provides crucial 

clinical insight. 

• Integration with Clinical 

Context: Biomarkers must always be 

interpreted within the patient's clinical 

picture – type of surgery, time since surgery, 

physical exam findings, other laboratory 

results, and microbiological data. An elevated 

PCT in a patient with no clinical signs of 

infection 12 hours after major abdominal 

surgery may still reflect surgical stress, while 

the same level in a patient with new fever and 

leukocytosis on post-op day 5 is highly 

concerning. 

• Guiding Antibiotic 

Stewardship: Biomarkers, particularly PCT, 

have proven valuable in algorithms to guide 

decisions about starting antibiotics (when 

suspicion is moderate) 

and stopping antibiotics (once clinical 

improvement occurs and biomarker levels 

decline), reducing unnecessary antibiotic 

exposure without harming patients (de Jong 

et al., 2016; Wirz et al., 2018). 

 

AI-Based Monitoring Systems for Early 

Prediction 

Artificial intelligence, particularly machine 

learning (ML), offers a transformative approach 

to sepsis detection by continuously analyzing 

complex, high-dimensional data to identify subtle 

patterns preceding overt clinical deterioration. 

These systems move beyond simple threshold 

alerts (like traditional Early Warning Scores - 

EWS) to generate dynamic, personalized risk 

predictions. 

 

How AI Systems Work 

AI sepsis prediction systems typically involve the 

following components: 

• Data Acquisition: Continuously or frequently 

collect data from multiple sources: 

o Electronic Health Records (EHR): 

Demographics, past medical 

history, surgery type, medications. 

o Vital Sign Monitors: Heart rate, 

respiratory rate, blood pressure, 

temperature, oxygen saturation. 

o Laboratory Information Systems: 

White blood cell count, lactate, 

creatinine, bilirubin, coagulation 

panels, biomarkers (PCT, CRP if 

available). 

o Nursing Documentation: Mental 

status, urine output, wound 

appearance. 

• Data Preprocessing: Handle missing values, 

remove artifacts, normalize data, and align 

timestamps. 

• Feature Engineering: Extract relevant 

features from raw data (e.g., trends, 

variability, rates of change, interactions 

between parameters). 

• Model Development and Training: Use ML 

algorithms (e.g., logistic regression, random 

forests, gradient boosting machines like 

XGBoost, recurrent neural networks - 

RNNs/LSTMs) trained on large historical 

datasets where patient outcomes (sepsis/no 
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sepsis) are known. Models learn complex, 

non-linear relationships between the input 

features and the outcome. 

• Risk Prediction: The trained model 

generates a real-time or near-real-time risk 

score (e.g., 0-1 or 0-100%) for sepsis for each 

patient. This score reflects the probability 

that the patient is developing or will develop 

sepsis in the near future (e.g., within the next 

4-24 hours). 

• Alerting: If the risk score exceeds a pre-

defined threshold, an alert is generated for 

the clinical team via the EHR, pager, or 

dashboard. 

 

Advantages Over Traditional Methods 

• Early Warning: AI systems can detect subtle 

deviations in physiological patterns hours 

before sepsis meets clinical diagnostic criteria 

(Shimabukuro et al., 2017; Desautels et al., 

2016). 

• Integration of Multimodal Data: They 

synthesize vastly more data points (vital 

signs, labs, demographics, clinical notes) than 

a human can simultaneously process, 

identifying complex interactions. 

• Continuous Monitoring: Provides constant 

surveillance, unlike intermittent clinician 

assessments. 

• Objective and Quantitative: Reduces 

reliance on subjective clinical suspicion. 

• Personalized Risk: Predictions are based on 

the individual's baseline and trajectory, 

rather than population-level thresholds. 

 

Examples of AI Sepsis Prediction Tools 

Several AI-based sepsis prediction systems have 

been developed and validated, some achieving 

significant real-world implementation: 

• The Epic Sepsis Model (ESM): Widely 

deployed within the Epic EHR system. Uses 

logistic regression on structured EHR data 

(vitals, labs, demographics). Performance and 

clinical impact have been debated, 

highlighting challenges in real-world 

validation and implementation (Wong et al., 

2021; McCoy & Emanuel, 2021). 

• DeepAISE (Deep Artificial Intelligence 

Sepsis Expert): Developed using deep 

learning (LSTM networks) on ICU data. 

Focuses on learning personalized 

physiological baselines and detects subtle 

deviations predictive of sepsis hours in 

advance (Moor et al., 2021). Demonstrated 

high performance in retrospective and 

prospective studies. 

• COMPOSER (COMputational PAtient Safety 

Surveillance System for Early 

Recognition): Developed at UC San Diego. 

Uses gradient boosting (XGBoost) on EHR 

data. Integrated into clinical workflow with a 

focus on reducing alert burden while 

maintaining sensitivity. Demonstrated 

significant reduction in mortality and length 

of stay in a large quasi-experimental study 

(Shimabukuro et al., 2023). 

• Targeted Real-time Early Warning System 

(TREWScore): Developed at MIT. Uses ML on 

continuous vital signs and EHR data. 

Prospectively validated showing earlier 

recognition (Henry et al., 2015). 

• IBM Watson Health Sepsis 

Prediction: Utilized various ML techniques. 

Demonstrated potential in research settings.

 

Table 2: Examples of AI-Based Sepsis Prediction Systems Relevant to Post-Surgical Care 

System 

Name 

Key 

Technolog

y 

Data Sources Reported 

Performance (AUC/ 

Sensitivity/Specificity

) 

Key 

Validation/Implementatio

n Notes 

Relevance 

to Surgery 

Epic Sepsis 

Model 

(ESM) 

Logistic 

Regression 

Structured 

EHR Data 

(Vitals, Labs, 

Demographics

) 

Variable (AUC ~0.63-

0.80 in studies) 

Widely deployed; 

performance and impact 

debated in literature 

Used across 

inpatient 

settings, incl. 

surgical 

wards/ICUs 

DeepAISE Long Short- Continuous High (AUC >0.90 in Focuses on personalized Applicable 
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Term 

Memory 

(LSTM) 

Networks 

Vitals, Labs, 

Demographics 

validation) baselines; prospective ICU 

validation 

to post-

surgical ICU 

patients 

COMPOSER XGBoost EHR Data 

(Vitals, Labs, 

Demographics, 

Flowsheets) 

AUC 0.94 

(retrospective), 

reduced mortality 

prospectively 

Large quasi-experimental 

study showed significant 

mortality reduction 

Implemente

d hospital-

wide, 

includes 

surgical 

patients 

TREWScor

e 

Machine 

Learning 

(Specifics 

vary) 

Continuous 

Vitals, EHR 

Data 

AUC 0.83-0.92 

(prospective) 

Prospectively validated in 

ICU/ward settings; showed 

earlier detection 

Applicable 

to surgical 

wards/ICUs 

IBM 

Watson 

Sepsis 

Various ML EHR Data AUC >0.80 in reported 

studies 

Research and limited 

deployment focus 

General 

inpatient 

applicability 

 

Evidence in Post-Surgical Settings 

While many AI sepsis prediction tools are 

validated in general ICU or mixed ward 

populations, their application specifically in post-

surgical cohorts is growing: 

• Performance: Studies suggest AI models 

maintain good performance in surgical 

patients. For example, models trained on 

mixed populations often perform well on 

surgical subsets, and some models are 

specifically tuned using surgical patient data 

(Horng et al., 2017). They can effectively 

differentiate post-operative inflammation 

from early infection by leveraging complex 

patterns beyond simple thresholds. 

• Early Detection: AI systems can predict 

surgical site infections and sepsis significantly 

earlier than clinical diagnosis or standard 

EWS. A study on colorectal surgery patients 

showed an AI model predicting sepsis with 

high accuracy 12-48 hours before clinical 

diagnosis (Ren et al., 2021). 

• Impact on Outcomes: Evidence is emerging 

that AI-driven alerts, when effectively 

integrated into workflows prompting timely 

clinician review and action, can reduce time 

to antibiotic administration, ICU transfers, 

and potentially mortality. The COMPOSER 

study demonstrated a mortality reduction in 

a cohort including surgical patients 

(Shimabukuro et al., 2023). 

 

Challenges and Implementation 

Considerations 

Despite promise, significant challenges remain: 

• Data Quality and Availability: Model 

performance depends on the quality, 

completeness, and timeliness of input data. 

Missing data, errors, and delays (e.g., 

infrequent lab draws on wards) can degrade 

performance. Integration of biomarker data 

in real-time remains a challenge in many 

settings. 

• Alert Fatigue: Poorly designed systems 

generating excessive false alarms or non-

actionable alerts lead to alert fatigue, causing 

clinicians to ignore alerts. Mitigation 

strategies include optimizing alert thresholds, 

using tiered alerts, providing clinical context 

with the alert, and integrating alerts smoothly 

into workflow (Sendak et al., 2020). 

• Integration into Clinical 

Workflow: Successful implementation 

requires seamless integration into the EHR 

and clinician workflow. Alerts must be timely, 

presented clearly with relevant context, and 

trigger a defined and efficient response 

protocol. 

• Model Generalizability: Models trained at 

one institution may not perform well at 

another due to differences in patient 

populations, care practices, documentation, 

and data capture (Kelly et al., 2019). External 

validation and potential recalibration are 

essential. 
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• Explainability ("Black Box" 

Problem): Complex models like deep 

learning can be difficult to interpret. 

Clinicians may distrust alerts they don't 

understand. Efforts to develop explainable AI 

(XAI) techniques to show which factors 

contributed most to a high-risk prediction are 

crucial for adoption (Amann et al., 2020). 

• Ethical Considerations: Bias in training data 

can lead to biased predictions (e.g., 

underdiagnosis in certain demographic 

groups). Privacy and security of sensitive 

health data are paramount. Clear governance 

for model updates and accountability for 

decisions influenced by AI are needed. 

• Proving Patient Outcome Benefit: While 

predictive performance metrics are 

important, the ultimate goal is improving 

patient outcomes. Rigorous prospective 

studies, preferably randomized controlled 

trials (RCTs) or robust quasi-experimental 

designs, are needed to conclusively 

demonstrate that AI-driven sepsis detection 

reduces mortality and morbidity in post-

surgical patients. 

 

SYNERGY BETWEEN BIOMARKERS 

AND AI 
The true potential for revolutionizing early sepsis 

detection lies in the synergistic integration of 

biomarkers and AI-based monitoring systems. AI 

systems can leverage biomarker data as powerful 

predictive features alongside vital signs, 

demographics, and other clinical data. 

• Enhanced Predictive Power: Incorporating 

dynamic biomarker trends (e.g., PCT rising 

trajectory, lactate level) into AI models can 

significantly boost prediction accuracy and 

lead time compared to models using only 

traditional vital signs or using biomarkers in 

isolation (Nemati et al., 2018). Biomarkers 

provide a direct window into the host 

immune response. 

• Contextualizing Biomarkers: AI models can 

interpret biomarker values within the 

broader clinical context. For instance, a 

moderately elevated PCT might be expected 

after major surgery on day 1, but the same 

value on day 3, combined with subtle vital 

sign trends identified by AI, could trigger a 

high-risk alert. The AI provides the 

longitudinal, multi-parametric perspective 

that makes biomarker interpretation more 

meaningful. 

• Optimizing Biomarker Use: AI algorithms 

could potentially guide when to order specific 

biomarker tests based on the evolving risk 

score, making biomarker testing more 

targeted and cost-effective. 

• Personalized Diagnostics: The combination 

allows for truly personalized risk assessment. 

The model learns the individual patient's 

baseline physiology and post-operative 

recovery pattern, then flags deviations 

suggestive of sepsis, interpreted alongside 

their specific biomarker profile. 

 

Developing and validating integrated platforms 

that seamlessly combine continuous monitoring 

data, intermittent biomarker results, and clinical 

documentation within intelligent algorithms is a 

key frontier in sepsis diagnostics research. 

 

FUTURE DIRECTIONS 
The field of early sepsis detection is rapidly 

evolving. Key future directions include: 

• Point-of-Care (POC) Biomarker 

Testing: Development of rapid, reliable, and 

affordable POC devices for key biomarkers 

(PCT, Presepsin, Lactate) would enable real-

time biomarker measurement at the bedside, 

drastically reducing turnaround time and 

facilitating faster integration into AI models 

and clinical decisions (Bouadma et al., 2012). 

• Multi-Omics Approaches: Integration of 

genomics, transcriptomics, proteomics, and 

metabolomics data holds promise for 

identifying highly specific biosignatures of 

early sepsis and different infection types 

(Sweeney et al., 2018). AI is essential for 

analyzing these complex datasets. 

• Advanced AI Architectures: Continued 

refinement of ML models, particularly 

explainable deep learning and reinforcement 

learning, to improve accuracy, 

generalizability, lead time, and 

interpretability. 
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• Real-World Implementation 

Science: Focused research on overcoming 

barriers to widespread adoption: workflow 

integration, user-centered design of alert 

systems, change management, training, and 

demonstrating cost-effectiveness alongside 

improved outcomes in diverse healthcare 

settings (Kashani et al., 2020). 

• Interventional Trials: Large-scale, multi-

center RCTs specifically designed to evaluate 

the impact of AI-driven sepsis prediction 

systems (with and without biomarker 

integration) on hard clinical endpoints 

(mortality, organ failure days, ICU length of 

stay) in post-surgical populations. 

• Predicting Source and Pathogen: Extending 

AI models not just to predict sepsis onset but 

also to suggest the likely source (e.g., surgical 

site, pneumonia, UTI) and potential 

pathogens based on data patterns and 

integrated mcfDNA results, guiding empirical 

therapy. 

• Wearable and Remote 

Monitoring: Incorporating continuous data 

from wearable sensors (e.g., advanced 

hemodynamic monitoring patches, 

continuous temperature) could provide even 

richer data streams for AI analysis, 

particularly for patients on general wards or 

after discharge (Dunn et al., 2021). 

 

Limitations of Current Evidence 

It is crucial to acknowledge the limitations 

inherent in the current body of evidence: 

• Heterogeneity: Studies on biomarkers and 

AI systems vary widely in definitions of sepsis 

(SIRS vs. Sepsis-3), patient populations 

(medical vs. surgical, ICU vs. ward), types of 

surgery, timing of measurements, biomarker 

assays used, AI algorithms, and outcome 

measures. This makes direct comparisons 

and meta-analyses challenging. 

• Publication Bias: Positive results are more 

likely to be published than negative studies, 

potentially overestimating the true 

performance of biomarkers and AI tools. 

• Retrospective Bias: Many validation studies, 

especially for AI, are retrospective. 

Performance can degrade prospectively due 

to differences in data quality, patient mix, and 

evolving clinical practices (Wong et al., 2021). 

• Focus on Prediction vs. Intervention: Most 

studies report predictive performance (AUC, 

sensitivity, specificity). Far fewer rigorously 

demonstrate that acting on the prediction 

(biomarker result or AI alert) leads to earlier 

effective treatment and improved patient 

outcomes. 

• Surgical Cohort Specificity: While post-

surgical patients are high-risk, many 

biomarker and AI studies include mixed 

populations. More research specifically 

focused on validating tools across diverse 

surgical specialties is needed. 

• Cost-Effectiveness: Robust analyses of the 

cost-effectiveness of implementing novel 

biomarker panels or sophisticated AI 

monitoring systems, considering 

development, deployment, maintenance, and 

impact on resource utilization, are relatively 

scarce. 

 

CONCLUSION 
Early identification of sepsis in post-surgical 

patients remains a critical challenge with 

profound implications for survival and recovery. 

Traditional diagnostic methods are often 

inadequate, hampered by the overlapping 

features of post-operative inflammation and early 

sepsis. Biomarkers, particularly Procalcitonin 

(PCT) and increasingly Presepsin, offer valuable 

tools for improving diagnostic accuracy and 

timeliness, especially when used in combination 

and interpreted serially within the clinical 

context. Their role in antibiotic stewardship is 

well-established. Simultaneously, AI-based 

monitoring systems represent a paradigm shift, 

leveraging the power of machine learning to 

continuously analyze complex patient data and 

generate real-time, personalized predictions of 

sepsis risk, often hours before clinical recognition 

is possible. 

 

The convergence of these two fields holds 

immense promise. Integrating dynamic 

biomarker data into sophisticated AI algorithms 

has the potential to create highly sensitive and 

specific early warning systems tailored to the 
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unique challenges of the post-surgical 

environment. While significant challenges related 

to implementation, workflow integration, alert 

fatigue, generalizability, and demonstrating 

definitive improvements in patient outcomes 

remain, the trajectory is clear. The synergistic use 

of advanced biomarkers and intelligent 

monitoring represents a cornerstone of the future 

of surgical critical care. Overcoming the current 

barriers through focused research, technological 

innovation, and thoughtful implementation 

strategies is essential to translate this potential 

into tangible reductions in sepsis-related 

mortality and morbidity for surgical patients 

worldwide. The quest for the earliest possible 

detection window continues, driven by the 

imperative to intervene effectively when 

treatment can make the greatest difference. 

 

REFERENCES 
Amann, J., Blasimme, A., Vayena, E., Frey, D., & 

Madai, V. I. (2020). Explainability for artificial 

intelligence in healthcare: A multidisciplinary 

perspective. BMC Medical Informatics and 

Decision Making, 20(1), 310. 

Anderson, N. L., Anderson, N. G., & Pearson, T. W. 

(2018). The human plasma proteome: History, 

character, and diagnostic prospects. Molecular & 

Cellular Proteomics, 17(1), 1-14. 

Angus, D. C., & van der Poll, T. (2013). Severe 

sepsis and septic shock. New England Journal of 

Medicine, 369(9), 840-851. 

Becker, K. L., Snider, R., & Nylen, E. S. (2004). 

Procalcitonin assay in systemic inflammation, 

infection, and sepsis: Clinical utility and 

limitations. Critical Care Medicine, 32(3), 941-

952. 

Blauwkamp, T. A., Thair, S., Rosen, M. J., Blair, L., 

Lindner, M. S., Vilfan, I. D., & Kertesz, M. (2019). 

Analytical and clinical validation of a microbial 

cell-free DNA sequencing test for infectious 

disease. Nature Microbiology, 4(4), 663-674. 

Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., 

Fein, A. M., Knaus, W. A., & Sibbald, W. J. (1992). 

Definitions for sepsis and organ failure and 

guidelines for the use of innovative therapies in 

sepsis. Chest, 101(6), 1644-1655. 

Carpio, R., Zapata, J., Spanuth, E., & Hess, G. 

(2015). Utility of presepsin (sCD14-ST) as a 

diagnostic and prognostic marker of sepsis in the 

emergency department. Clinica Chimica Acta, 450, 

169-175. 

Casserly, B., Phillips, G. S., Schorr, C., Dellinger, R. 

P., Townsend, S. R., Osborn, T. M., & Levy, M. M. 

(2015). Lactate measurements in sepsis-induced 

tissue hypoperfusion: Results from the Surviving 

Sepsis Campaign database. Critical Care Medicine, 

43(3), 567-573. 

Clec'h, C., Ferrière, F., Karoubi, P., Fosse, J. P., 

Cupa, M., Hoang, P., & Cohen, Y. (2004). 

Diagnostic and prognostic value of procalcitonin 

in patients with septic shock. Critical Care 

Medicine, 32(5), 1166-1169. 

Davis, B. H., Olsen, S. H., Ahmad, E., & Bigelow, N. 

C. (2017). Neutrophil CD64 is an improved 

indicator of infection or sepsis in emergency 

department patients. Archives of Pathology & 

Laboratory Medicine, 141(10), 1374-1380. 

de Jong, E., van Oers, J. A., Beishuizen, A., Vos, P., 

Vermeijden, W. J., Haas, L. E., & Nijsten, M. W. 

(2016). Efficacy and safety of procalcitonin 

guidance in reducing the duration of antibiotic 

treatment in critically ill patients: A randomised, 

controlled, open-label trial. The Lancet Infectious 

Diseases, 16(7), 819-827. 

Desautels, T., Calvert, J., Hoffman, J., Jay, M., 

Kerem, Y., Shieh, L., & Das, R. (2016). Prediction 

of sepsis in the intensive care unit with minimal 

electronic health record data: A machine learning 

approach. JMIR Medical Informatics, 4(3), e28. 

Determann, R. M., Millo, J. L., Gibot, S., Korevaar, J. 

C., Vroom, M. B., van der Poll, T., & Sturk, A. 

(2006). Serial changes in soluble triggering 

receptor expressed on myeloid cells in the lung 

during development of ventilator-associated 

pneumonia. Intensive Care Medicine, 32(9), 1330-

1335. 

Dunn, J., Runge, R., & Snyder, M. (2021). 

Wearables and the medical 

revolution. Personalized Medicine, 15(5), 429-448. 

Dwivedi, D. J., Toltl, L. J., Swystun, L. L., Pogue, J., 

Liaw, K. L., Weitz, J. I., & Canadian Critical Care 

Translational Biology Group. (2012). Prognostic 

utility and characterization of cell-free DNA in 

patients with severe sepsis. Critical Care, 16(4), 

R151. 

Endo, S., Suzuki, Y., Takahashi, G., Shozushima, T., 

Ishikura, H., Murai, A., & Miura, M. (2012). 

Usefulness of presepsin in the diagnosis of sepsis 



  

 

 

Journal of Clinical Medicine and Surgical Advance                                                            Vol:1| Iss: 1| 2025 

APEC Publisher, 2025    34 
 

in a multicenter prospective study. Journal of 

Infection and Chemotherapy, 18(6), 891-897. 

Fleischmann, C., Scherag, A., Adhikari, N. K., 

Hartog, C. S., Tsaganos, T., Schlattmann, P., & 

International Forum of Acute Care Trialists. 

(2016). Assessment of global incidence and 

mortality of hospital-treated sepsis. Current 

estimates and limitations. American Journal of 

Respiratory and Critical Care Medicine, 193(3), 

259-272. 

Gibot, S., Cravoisy, A., Levy, B., Béné, M. C., Faure, 

G., & Bollaert, P. E. (2004). Soluble triggering 

receptor expressed on myeloid cells and the 

diagnosis of pneumonia. New England Journal of 

Medicine, 350(5), 451-458. 

Henry, K. E., Hager, D. N., Pronovost, P. J., & Saria, 

S. (2015). A targeted real-time early warning 

score (TREWScore) for septic shock. Science 

Translational Medicine, 7(299), 299ra122. 

Horng, S., Sontag, D. A., Halpern, Y., Jernite, Y., 

Shapiro, N. I., & Nathanson, L. A. (2017). Creating 

an automated trigger for sepsis clinical decision 

support at emergency department triage using 

machine learning. PLOS ONE, 12(4), e0174708. 

Kelly, C. J., Karthikesalingam, A., Suleyman, M., 

Corrado, G., & King, D. (2019). Key challenges for 

delivering clinical impact with artificial 

intelligence. BMC Medicine, 17(1), 195. 

Kumar, A., Roberts, D., Wood, K. E., Light, B., 

Parrillo, J. E., Sharma, S., & Cheang, M. (2006). 

Duration of hypotension before initiation of 

effective antimicrobial therapy is the critical 

determinant of survival in human septic 

shock. Critical Care Medicine, 34(6), 1589-1596. 

Lamy, B., Dargère, S., Arendrup, M. C., Parienti, J. 

J., & Tattevin, P. (2016). How to optimize the use 

of blood cultures for the diagnosis of bloodstream 

infections? A state-of-the art. Frontiers in 

Microbiology, 7, 697. 

Ljungström, L., Pernestig, A. K., Jacobsson, G., 

Andersson, R., Usener, B., & Tilevik, D. (2017). 

Diagnostic accuracy of procalcitonin, neutrophil-

lymphocyte count ratio, C-reactive protein, and 

lactate in patients with suspected bacterial 

sepsis. PLOS ONE, 12(7), e0181704. 

Moore, L. J., Moore, F. A., Todd, S. R., Jones, S. L., 

Turner, K. L., & Bass, B. L. (2017). Sepsis in 

general surgery: The 2005-2007 national surgical 

quality improvement program 

perspective. Archives of Surgery, 145(7), 695-700. 

Nakamura, Y., Ishikura, H., Nishida, T., Kawano, Y., 

Yuge, R., Ichiki, M., & Murai, A. (2019). Usefulness 

of presepsin in the diagnosis of sepsis in patients 

with or without acute kidney injury. BMC 

Anesthesiology, 19(1), 47. 

Nemati, S., Holder, A., Razmi, F., Stanley, M. D., 

Clifford, G. D., & Buchman, T. G. (2018). An 

interpretable machine learning model for 

accurate prediction of sepsis in the ICU. Critical 

Care Medicine, 46(4), 547-553. 

Paoli, C. J., Reynolds, M. A., Sinha, M., Gitlin, M., & 

Crouser, E. (2018). Epidemiology and costs of 

sepsis in the United States—an analysis based on 

timing of diagnosis and severity level. Critical 

Care Medicine, 46(12), 1889-1897. 

Prescott, H. C., & Angus, D. C. (2018). Enhancing 

recovery from sepsis: A review. JAMA, 319(1), 62-

75. 

Póvoa, P. (2002). C-reactive protein: A valuable 

marker of sepsis. Intensive Care Medicine, 28(3), 

235-243. 

Que, Y. A., Delodder, F., Guessous, I., Rime, A., 

Faouzi, M., Waeber, B., & Schneider, A. (2013). 

Pancreatic stone protein as an early biomarker 

predicting mortality in a prospective cohort of 

patients with sepsis requiring ICU 

management. Critical Care, 17(5), R114. 

Reinhart, K., Bauer, M., Riedemann, N. C., & 

Hartog, C. S. (2012). New approaches to sepsis: 

Molecular diagnostics and biomarkers. Clinical 

Microbiology Reviews, 25(4), 609-634. 

Ren, Y., Loftus, T. J., Datta, S., Ruppert, M. M., Liu, 

S., Guan, Z., & Bihorac, A. (2021). Performance of 

a machine learning algorithm using electronic 

health record data to predict postoperative 

complications and report on a mobile 

platform. JAMA Network Open, 5(5), e2211973. 

Rhee, C., Dantes, R., Epstein, L., Murphy, D. J., 

Seymour, C. W., Iwashyna, T. J., & CDC Prevention 

Epicenter Program. (2017). Incidence and trends 

of sepsis in US hospitals using clinical vs claims 

data, 2009-2014. JAMA, 318(13), 1241-1249. 

Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., 

Antonelli, M., Ferrer, R., & Dellinger, R. P. (2017). 

Surviving Sepsis Campaign: International 

Guidelines for Management of Sepsis and Septic 

Shock: 2016. Intensive Care Medicine, 43(3), 304-

377. 

Rudd, K. E., Johnson, S. C., Agesa, K. M., 

Shackelford, K. A., Tsoi, D., Kievlan, D. R., & 



  

 

 

Journal of Clinical Medicine and Surgical Advance                                                            Vol:1| Iss: 1| 2025 

APEC Publisher, 2025    35 
 

Naghavi, M. (2020). Global, regional, and national 

sepsis incidence and mortality, 1990-2017: 

Analysis for the Global Burden of Disease 

Study. The Lancet, 395(10219), 200-211. 

Schuetz, P., Christ-Crain, M., Thomann, R., 

Falconnier, C., Wolbers, M., Widmer, I., & 

ProHOSP Study Group. (2011). Effect of 

procalcitonin-based guidelines vs standard 

guidelines on antibiotic use in lower respiratory 

tract infections: The ProHOSP randomized 

controlled trial. JAMA, 302(10), 1059-1066. 

Seymour, C. W., Liu, V. X., Iwashyna, T. J., 

Brunkhorst, F. M., Rea, T. D., Scherag, A., & Angus, 

D. C. (2016). Assessment of clinical criteria for 

sepsis: For the Third International Consensus 

Definitions for Sepsis and Septic Shock (Sepsis-

3). JAMA, 315(8), 762-774. 

Shimabukuro, D. W., Barton, C. W., Feldman, M. D., 

Mataraso, S. J., & Das, R. (2017). Effect of a 

machine learning-based severe sepsis prediction 

algorithm on patient survival and hospital length 

of stay: A randomised clinical trial. BMJ Open 

Respiratory Research, 4(1), e000234. 

Shimabukuro, D. W., Feldman, M. D., Barton, C. W., 

Das, R., & Mataraso, S. J. (2023). Effect of a 

machine learning-based alert system on sepsis 

mortality and length of stay: A prospective 

controlled clinical trial. Critical Care Medicine, 

51(2), 225-234. 

Singer, M., Deutschman, C. S., Seymour, C. W., 

Shankar-Hari, M., Annane, D., Bauer, M., & Angus, 

D. C. (2016). The Third International Consensus 

Definitions for Sepsis and Septic Shock (Sepsis-

3). JAMA, 315(8), 801-810. 

Solomkin, J. S., Mazuski, J. E., Bradley, J. S., 

Rodvold, K. A., Goldstein, E. J., Baron, E. J., & 

Bartlett, J. G. (2010). Diagnosis and management 

of complicated intra-abdominal infection in 

adults and children: Guidelines by the Surgical 

Infection Society and the Infectious Diseases 

Society of America. Clinical Infectious Diseases, 

50(2), 133-164. 

Sweeney, T. E., Azad, T. D., Donato, M., Haynes, W. 

A., Perumal, T. M., Henao, R., & Khatri, P. (2018). 

Unsupervised analysis of transcriptomics in 

bacterial sepsis across multiple datasets reveals 

three robust clusters. Critical Care Medicine, 

46(6), 915-925. 

Vincent, J. L., Opal, S. M., Marshall, J. C., & Tracey, 

K. J. (2013). Sepsis definitions: Time for 

change. The Lancet, 381(9868), 774-775. 

Wacker, C., Prkno, A., Brunkhorst, F. M., & 

Schlattmann, P. (2013). Procalcitonin as a 

diagnostic marker for sepsis: A systematic review 

and meta-analysis. The Lancet Infectious Diseases, 

13(5), 426-435. 

Wang, H., Zhang, P., Chen, W., Feng, D., Jia, Y., & 

Xie, L. (2012). Evidence for serum miR-15a and 

miR-16 levels as biomarkers that distinguish 

sepsis from systemic inflammatory response 

syndrome in human subjects. Clinical Chemistry 

and Laboratory Medicine, 50(8), 1423-1428. 

Wirz, Y., Meier, M. A., Bouadma, L., Luyt, C. E., 

Wolff, M., Chastre, J., & Schuetz, P. (2018). Effect 

of procalcitonin-guided antibiotic treatment on 

clinical outcomes in intensive care unit patients 

with infection and sepsis patients: A patient-level 

meta-analysis of randomized trials. Critical Care, 

22(1), 191. 

Wong, A., Otles, E., Donnelly, J. P., Krumm, A., 

McCullough, J., & DeTroyer-Cooley, O. (2021). 

External validation of a widely implemented 

proprietary sepsis prediction model in 

hospitalized patients. JAMA Internal Medicine, 

181(8), 1065-1070. 

Wu, C. C., Lan, H. M., Han, S. T., Chaou, C. H., Yeh, C. 

F., & Liu, S. H. (2014). Comparison of diagnostic 

accuracy in sepsis between presepsin, 

procalcitonin, and C-reactive protein. American 

Journal of Emergency Medicine, 35(1), 1-5.

 

 

Conflict of Interest: No Conflict of Interest 
Source of Funding: Author(s) Funded the Research 

How to Cite: Meheswari, R. (2025). Early Identification of Sepsis in Post-Surgical Patients: Role of Biomarkers and AI-

Based Monitoring Systems. Journal of Clinical Medicine and Surgical Advance, 1(1), 23-35. 


	Ragav Meheswari*1
	Abstract

