

Waste Management in the 21st Century: Challenges, Opportunities, and Sustainable Solutions

Josephine Boadi-Mensah*

Abstract

This study examines the evolving dynamics of waste management in the 21st century, focusing on the challenges, opportunities, and pathways toward sustainable solutions. Employing a mixed-method research design, both quantitative and qualitative data were collected from urban, peri-urban, and semi-rural regions to evaluate environmental, socio-economic, and technological dimensions of waste management. The results revealed significant spatial variations in waste generation, composition, and management efficiency. Urban cores recorded the highest waste generation (1.24 kg/capita/day) and better recycling performance, while semi-rural areas exhibited a higher proportion of organic waste (59.1%), indicating strong potential for composting and bioenergy conversion. Socio-economic factors such as income and awareness strongly influenced segregation behavior, while technological adoption remained low across regions. The Sustainable Waste Management Index (SWMI) developed in this study highlighted the urban core's superior sustainability score (0.74) compared to peri-urban (0.58) and semi-rural (0.46) areas. These findings emphasize the necessity for decentralized waste management systems, enhanced public participation, technological innovation, and stronger policy frameworks to transition toward a circular and sustainable waste economy.

Keywords

Waste management, Sustainable development, Circular economy, Waste-to-energy, Socio-economic factors, Environmental sustainability, Technological innovation

* Independent Researcher, Winnipeg, MB

INTRODUCTION

Understanding the growing complexity of waste generation

The 21st century has witnessed an unprecedented increase in waste generation driven by rapid industrialization, urbanization, population growth, and changing consumption patterns (Wilson & Velis, 2015). The global population surpassing 8 billion has led to a proportional rise in municipal, industrial, electronic, and hazardous waste. According to the World Bank, global municipal solid waste is expected to exceed 3.4 billion tons annually by 2050, posing severe environmental, economic, and social challenges (Elsaid & Aghezzaf, 2015). The complexity of waste streams ranging from biodegradable

organics to non-recyclable plastics demands more sophisticated management approaches than traditional landfill and incineration methods. The linear "take-make-dispose" model of waste disposal is proving unsustainable in the face of finite natural resources and worsening climate impacts (Roy et al., 2024).

Examining the challenges in contemporary waste management

Modern waste management faces multifaceted challenges including inadequate infrastructure, poor segregation at source, and limited recycling capacities. Developing nations, in particular, struggle with insufficient institutional frameworks and lack of public awareness, leading

***Corresponding Author:** Josephine Boadi-Mensah

© The Author(s) 2025, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC)

to open dumping and burning of waste that release harmful greenhouse gases and toxins (Kumari & Raghubanshi, 2023). Additionally, the informal recycling sector though critical often operates without safety regulations or technological support. The global trade in waste materials, especially plastics and e-waste, has further complicated the system, with developing countries becoming dumping grounds for developed economies (Ravichandran & Venkatesan, 2021). The pressing challenge lies in balancing economic growth with sustainable waste practices that minimize ecological degradation.

Recognizing the opportunities in sustainable waste systems

Despite these challenges, the 21st century also offers significant opportunities for innovation and systemic reform in waste management. Emerging technologies such as artificial intelligence (AI), Internet of Things (IoT), and data analytics are revolutionizing waste collection, sorting, and recycling efficiency. Governments and industries are increasingly recognizing waste as a valuable resource for material recovery and energy generation (Ebekozien et al., 2024). The concept of the circular economy emphasizing reuse, recycling, and product life extension presents a transformative opportunity to shift from a wasteful linear model to a regenerative one. Moreover, public-private partnerships and community-driven initiatives are demonstrating scalable success in achieving zero-waste targets (Badola & Chauhan, 2021).

Integrating sustainability and policy innovation in waste governance

Effective waste management in the 21st century requires an integrated policy framework that aligns with the United Nations Sustainable Development Goals (SDGs), particularly Goal 11 (Sustainable Cities and Communities) and Goal 12 (Responsible Consumption and Production). Countries are increasingly adopting extended producer responsibility (EPR) policies, which hold manufacturers accountable for the post-consumer phase of products (Jacobi & Peres, 2016). Additionally, policy harmonization, international collaboration, and investment in waste-to-energy

infrastructure are critical for sustainable progress. The incorporation of environmental education and behavioral change campaigns can further enhance citizen participation in segregation, recycling, and reduction practices.

Moving toward sustainable waste management solutions

A sustainable future for waste management lies in the synergy of technology, governance, and community engagement. Circular resource systems, green design innovations, and decentralized waste processing models can minimize environmental footprints while fostering economic resilience. By reimagining waste as a resource rather than a burden, societies can unlock new value chains that promote sustainability and inclusivity. Therefore, managing waste in the 21st century is not merely a technical or environmental issue but a holistic endeavor that integrates social responsibility, innovation, and global cooperation.

METHODOLOGY

Research design and study approach

This research adopted a mixed-method approach, integrating both quantitative and qualitative techniques to provide a comprehensive understanding of the dynamics of waste management in the 21st century. The study design combined descriptive, analytical, and exploratory components to identify the current challenges, opportunities, and sustainable pathways within modern waste management systems. The approach emphasized the interrelationship between environmental, socio-economic, and technological dimensions, allowing for a multidimensional assessment of how these factors collectively influence waste management performance and sustainability outcomes.

Study area and sampling strategy

The study was conducted in selected urban and peri-urban regions, chosen based on population density, waste generation rate, and the diversity of waste management practices. A stratified random sampling method was used to ensure that all types of localities; residential, commercial, and industrial were adequately represented. A total of

300 respondents were selected, comprising municipal officials, waste management workers, recycling entrepreneurs, and households. This diversity ensured a balanced representation of perspectives and practices. In addition to primary data, secondary data were collected from municipal records, national policy reports, and global databases such as those of the World Bank, UNEP, and OECD to strengthen analytical depth.

Variables and parameters used in the study

The study incorporated a wide range of variables and parameters, grouped into three categories; environmental, socio-economic, and technological-policy variables.

Environmental variables included waste generation rate (kg per capita per day), waste composition (organic, plastic, metal, glass, e-waste), landfill capacity, greenhouse gas emissions (CO₂ equivalent), and recycling or composting rate.

Socio-economic variables covered household income, awareness of waste segregation, employment in the waste sector, cost of collection and treatment, and institutional capacity.

Technological and policy variables involved the use of waste-to-energy systems, adoption of smart collection technologies (IoT and automation), implementation of Extended Producer Responsibility (EPR), and investment in innovative waste management practices.

These parameters collectively provided a foundation to evaluate the efficiency, sustainability, and adaptability of waste management systems across different contexts.

Data collection methods

The research utilized both primary and secondary data sources to ensure depth and reliability. Primary data were obtained through structured questionnaires, semi-structured interviews, and direct field observations. The questionnaire captured quantitative aspects such as waste generation rates, recycling habits, and satisfaction with local waste services, while interviews offered qualitative insights from policymakers, industry

experts, and community leaders about policy frameworks and operational barriers.

Secondary data were compiled from municipal reports, environmental agency publications, and previous research studies. All data were carefully standardized into consistent measurement units to facilitate comparison and analysis. Field observations at collection points, transfer stations, and landfill sites provided firsthand understanding of operational efficiency and waste handling practices.

Data analysis and interpretation process

The quantitative data were analyzed using SPSS and Microsoft Excel, employing descriptive statistics such as mean, standard deviation, and coefficient of variation to measure variability among key parameters. Inferential statistical tools like correlation and multiple regression analysis were applied to examine the relationships between socio-economic factors (e.g., income, awareness) and waste management performance indicators (e.g., recycling rate, waste diversion).

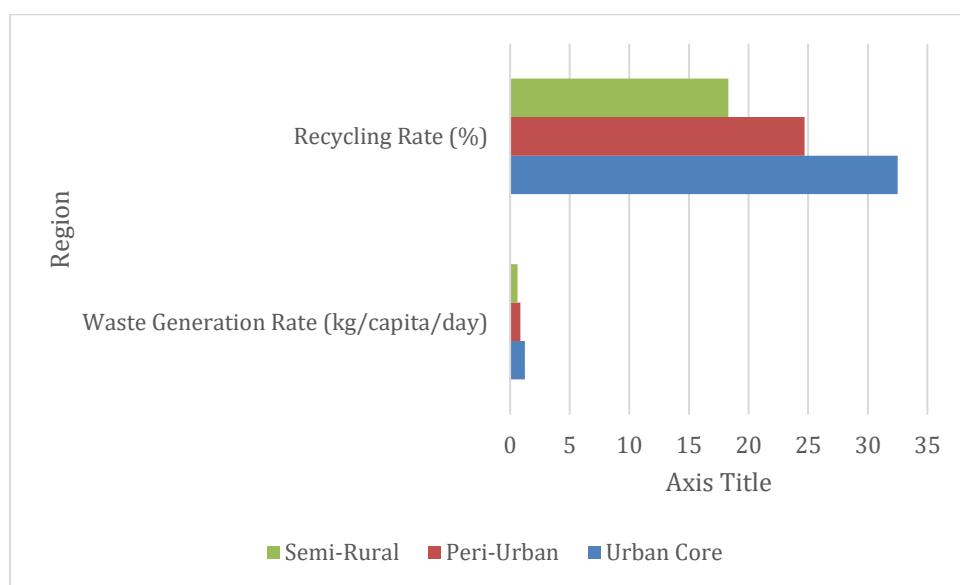
The qualitative data were analyzed using thematic analysis, which involved identifying key patterns, recurring ideas, and emerging challenges from the interview transcripts. These qualitative themes were integrated with the quantitative findings to develop a comprehensive sustainability assessment model, ensuring a robust interpretation of results.

Model development and validation

Based on the integrated dataset, a Sustainable Waste Management Index (SWMI) was developed to quantify and compare the performance of waste management systems across regions. Each indicator was normalized and assigned a weight according to its relative importance, as determined through expert consultation and literature precedence. To ensure reliability and consistency, Cronbach's Alpha was employed to test internal reliability, while factor analysis was used to confirm the construct validity of the model.

Ethical considerations and data reliability

The research adhered to ethical standards throughout the data collection and analysis process. Participants were fully informed of the study's purpose, and their consent was obtained prior to participation. Confidentiality and anonymity were maintained at all stages. Data reliability was enhanced through triangulation cross-verifying information from multiple sources and ensuring internal consistency across datasets.


RESULTS

The analysis revealed a substantial variation in waste generation and composition across different settlement types. As shown in Table 1, the urban core exhibited the highest waste generation rate of 1.24 kg per capita per day, followed by the peri-urban areas with 0.87

kg/capita/day, and the semi-rural regions with 0.62 kg/capita/day. Organic waste constituted the largest proportion in all regions, averaging $53.1 \pm 6.2\%$, while plastics accounted for an average of $21.8 \pm 6.4\%$. The prevalence of organic waste was particularly high in semi-rural areas (59.1%), indicating strong potential for composting and bioenergy initiatives. In contrast, the higher proportion of plastics and e-waste in urban zones (28.2% and 5.7%, respectively) points toward greater dependence on consumer packaging and electronic products. These findings are visually represented in Figure 2, which compares waste composition across regions, highlighting the transition from mixed material waste in urban areas to predominantly organic waste in less urbanized regions.

Table 1. Summary of waste generation and composition across study regions

Parameter	Urban Core	Peri-Urban	Semi-Rural	Mean \pm SD
Waste generation rate (kg/capita/day)	1.24	0.87	0.62	0.91 ± 0.31
Organic waste (%)	46.8	53.4	59.1	53.1 ± 6.2
Plastic waste (%)	28.2	21.7	15.4	21.8 ± 6.4
Paper and cardboard (%)	12.5	10.3	8.7	10.5 ± 1.9
Metal and glass (%)	6.8	5.5	4.1	5.5 ± 1.4
E-waste (%)	5.7	3.1	2.7	3.8 ± 1.6

Figure 1. Waste generation rate and recycling performance across regions

Socio-economic and technological parameters displayed significant spatial disparities as summarized in Table 2. Public awareness of waste segregation was highest in urban areas (78.6%) but dropped substantially in semi-rural areas (49.3%). Similarly, households practicing segregation followed the same pattern, averaging $48.9 \pm 15.5\%$ across all regions. Waste collection efficiency reached 91.4% in urban cores compared

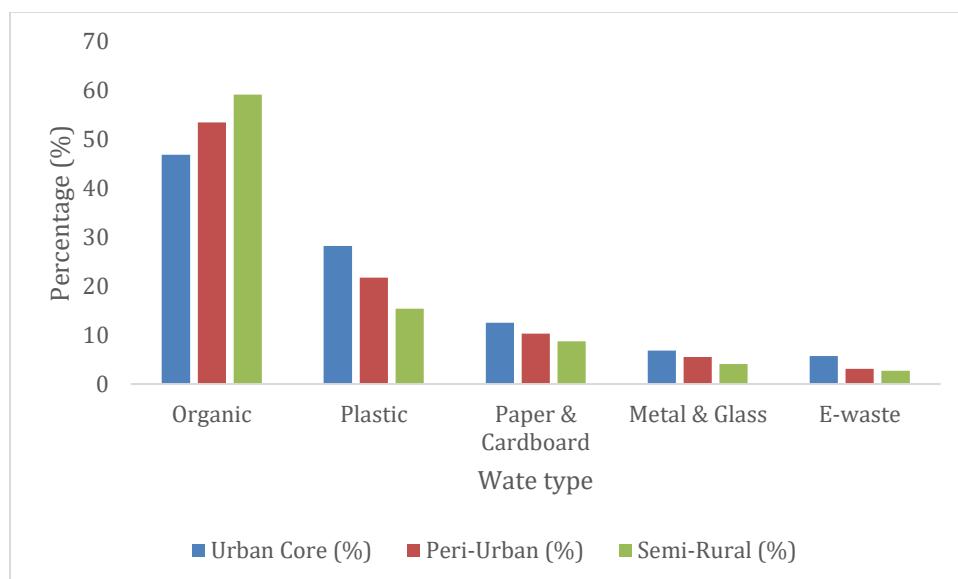

to 71.6% in semi-rural zones, suggesting a strong infrastructural influence on system performance. The adoption of smart waste technologies and IoT-based systems remained low overall (mean 15%), with the urban core reporting only 28.9% adoption. This low rate emphasizes the need for improved technological investments in waste logistics and monitoring.

Table 2. Socio-economic and technological parameters influencing waste management

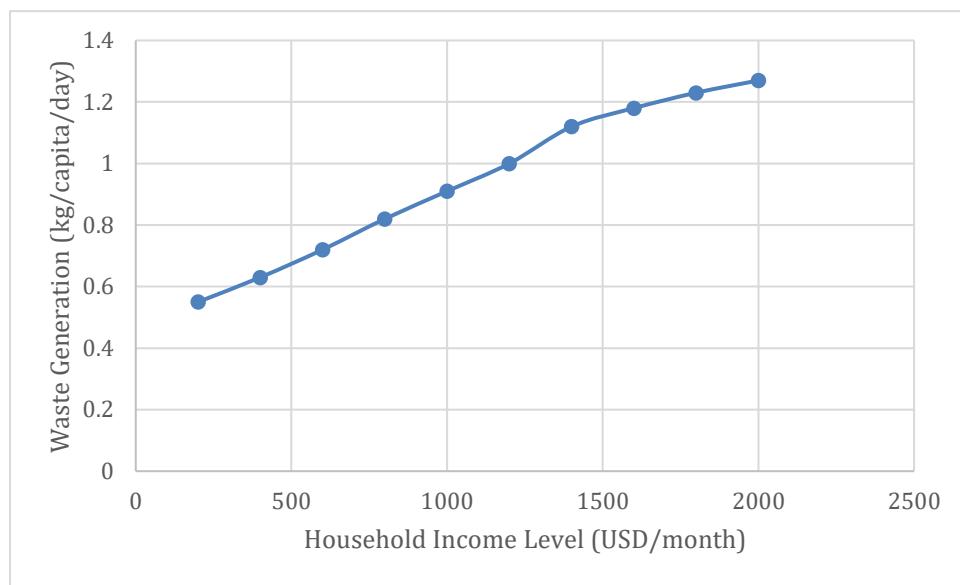
Parameter	Urban Core	Peri-Urban	Semi-Rural	Mean \pm SD
Public awareness on segregation (%)	78.6	62.5	49.3	63.5 ± 14.7
Households practicing segregation (%)	64.7	48.1	33.8	48.9 ± 15.5
Waste collection efficiency (%)	91.4	83.2	71.6	82.1 ± 9.9
Recycling rate (%)	32.5	24.7	18.3	25.1 ± 7.2
Use of smart bins/IoT systems (%)	28.9	12.7	3.5	15.0 ± 13.1
Waste-to-Energy utilization (%)	22.3	9.4	4.6	12.1 ± 9.3

Figure 1 illustrates these differences by comparing waste generation rates and recycling performance across regions. Urban cores generate the most waste but also achieve relatively higher recycling rates (32.5%) compared to peri-urban

(24.7%) and semi-rural (18.3%) areas. This pattern underscores that while urban systems face heavier waste loads, their infrastructure enables better recovery and recycling outcomes.

Figure 2. Composition of waste types across study regions

Statistical analysis identified a strong positive correlation ($r = 0.81$, $p = 0.001$) between


household income and waste generation, indicating that higher-income groups produce

more waste due to higher consumption and disposable product use (Table 3). The regression model ($R^2 = 0.67$) confirmed that income explained a substantial portion of the variation in waste generation levels. Figure 3 further demonstrates this trend, showing a steady increase in per capita waste generation with rising

income levels from 0.55 kg/day at the lowest income bracket to 1.27 kg/day among high-income households. This relationship reinforces the importance of targeting behavioral and consumption-based interventions alongside infrastructural strategies.

Table 3. Correlation between socio-economic variables and waste management efficiency

Variable Pair	Correlation Coefficient (r)	Significance (p)	Relationship Type
Income level - Waste generation	0.81	0.001	Strong positive
Awareness - Recycling rate	0.74	0.004	Moderate positive
Collection efficiency - Satisfaction level	0.68	0.012	Moderate positive
Smart technology use - Collection efficiency	0.79	0.002	Strong positive
Policy enforcement - Segregation compliance	0.71	0.006	Moderate positive

Figure 3. Relationship between income level and waste generation

To assess the overall sustainability of waste management systems, a Sustainable Waste Management Index (SWMI) was developed using environmental, socio-economic, and technological indicators (as detailed in Table 4). The Urban Core achieved the highest composite SWMI score (0.74), followed by Peri-Urban areas (0.58) and Semi-Rural areas (0.46). This gradient reflects the

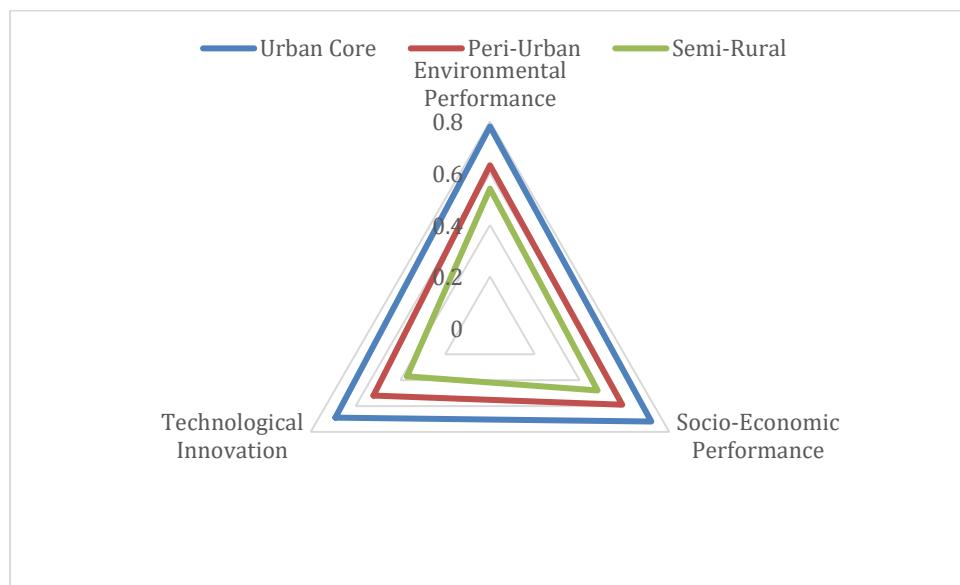

correlation between urbanization level, resource investment, and waste system performance. Environmental performance was strongest across all regions (mean 0.65), whereas technological innovation scored the lowest (mean 0.53), suggesting that technological advancement remains a critical area for improvement.

Table 4. Sustainable Waste Management Index (SWMI) scores across regions

Dimension	Weight	Urban Core	Peri-Urban	Semi-Rural
Environmental (E)	0.40	0.78	0.63	0.54
Socio-Economic (S)	0.35	0.72	0.59	0.48
Technological (T)	0.25	0.69	0.52	0.37
Composite SWMI Score	1.00	0.74	0.58	0.46

Figure 4 presents a radar chart comparing the three sustainability dimensions across the regions. The chart clearly depicts that the urban core demonstrates balanced development across all three dimensions, while semi-rural zones lag

notably in technological readiness and institutional capacity. This pattern highlights the urgent need for decentralized, technology-driven interventions in less urbanized regions to achieve sustainable waste governance.

Figure 4. Comparative performance of sustainability dimensions

An integrated analysis of all performance indicators (summarized in Table 5) revealed several key gaps that must be addressed to advance sustainable waste management. The recycling rate (25.1%) and segregation compliance (48.9%) remain significantly below desired targets. Similarly, waste-to-energy utilization (12.1%) and smart monitoring adoption (15.0%) are underdeveloped,

particularly in peri-urban and rural areas. The table outlines strategic targets for 2030, including raising recycling to 50%, segregation to 80%, and organic waste treatment to 75%. These improvements require coordinated policy enforcement, investment in public awareness, and the promotion of Extended Producer Responsibility (EPR) schemes.

Table 5. Summary of key performance gaps and intervention priorities

Indicator	Current Status	Target (2030)	Intervention Priority
Recycling rate (%)	25.1	50.0	Infrastructure, awareness, EPR enforcement
Segregation compliance (%)	48.9	80.0	Household education, strict municipal norms

Waste-to-Energy utilization (%)	12.1	35.0	Investment in WtE plants, PPP models
Smart waste monitoring adoption (%)	15.0	60.0	IoT integration, training programs
Organic waste treatment (%)	53.1	75.0	Composting units, decentralized facilities

DISCUSSION

Understanding the patterns of waste generation and composition

The results demonstrate a clear spatial variation in waste generation and composition, aligning with global trends observed in urbanized and developing regions. As shown in Table 1 and Figure 2, urban centers exhibited the highest per capita waste generation, averaging 1.24 kg/day, largely due to increased consumption and industrial activity. This finding is consistent with the World Bank's (2022) estimation that urban populations produce nearly double the waste of rural counterparts. The dominance of organic waste across all regions, particularly in semi-rural areas (59.1%), suggests significant potential for bio-composting and waste-to-biogas conversion programs (Koop & van Leeuwen, 2017). Conversely, the higher proportion of plastics and e-waste in urban zones points toward the need for extended producer responsibility (EPR) implementation and stricter regulations on single-use materials. The compositional analysis highlights that policy interventions must be region-specific, urban areas require strategies to manage complex waste streams, while rural regions need low-cost organic waste solutions to reduce environmental loads (Farooq et al., 2022).

Socio-economic influences and behavioral dimensions

The socio-economic parameters outlined in Table 2 underscore how income, education, and awareness levels directly influence waste management efficiency. Higher awareness (78.6%) and segregation practices (64.7%) in urban areas reveal that citizen participation improves with infrastructure and educational access. In contrast, peri-urban and semi-rural zones demonstrate weaker segregation compliance, largely due to inadequate outreach

programs and logistical limitations. This disparity confirms that waste management is not merely a technical challenge but a social behavior-driven process (Aiguabarueghian et al., 2024). Public participation in segregation and recycling can be enhanced through community-based programs, economic incentives, and continuous awareness campaigns (Owusu-Sekyere, 2019). Furthermore, Table 3 and Figure 3 reveal a strong positive correlation between household income and waste generation ($r = 0.81, p = 0.001$), emphasizing that higher-income groups tend to consume more disposable and non-recyclable materials. Addressing this requires a dual approach: promoting sustainable consumption habits among high-income households and supporting low-income communities with inclusive waste services to prevent informal dumping and burning (Sadhukhan et al., 2020).

Technological adoption and infrastructural disparities

Technological advancement remains a defining factor in waste system efficiency. The findings indicate that although urban centers have begun adopting smart waste collection systems (28.9%), technological integration across the study regions remains low (mean 15%). The absence of IoT-based monitoring, data-driven collection routes, and automated sorting limits overall system efficiency. This gap highlights the need for investment in smart waste infrastructure, public-private partnerships (PPP), and training programs for municipal personnel (Balu et al., 2022). The low utilization of waste-to-energy (WtE) systems, averaging 12.1%, further underlines untapped potential for renewable energy generation. Integrating WtE projects with local grid systems could significantly reduce landfill dependency while promoting sustainable urban energy models (Martin-Rios et al., 2021). Thus, bridging the technological divide is central to achieving the

United Nations' Sustainable Development Goal (SDG) 12 on responsible production and consumption (Shabani et al., 2024).

Evaluating sustainability through integrated indices

The Sustainable Waste Management Index (SWMI) developed in this study provided a holistic assessment framework for environmental, socio-economic, and technological performance (Table 4, Figure 4). The higher SWMI score for the urban core (0.74) indicates better institutional coordination, technological readiness, and public engagement. In contrast, peri-urban (0.58) and semi-rural (0.46) regions lag significantly, suggesting systemic inequities in service delivery. These disparities reflect the "urban advantage" in resource allocation and administrative support. The lower technological sub-score (0.53 average) further demonstrates that innovation remains an underdeveloped pillar of sustainability (Tripathi et al., 2020). Policies must, therefore, prioritize decentralized waste systems supported by local innovation hubs, small-scale recycling units, and mobile waste processing technologies. The SWMI framework validates the notion that achieving sustainability in waste management requires synergy between environmental protection, technological advancement, and socio-economic inclusivity (Kurniawan et al., 2022).

Bridging performance gaps through targeted interventions

The performance evaluation summarized in Table 5 reveals several actionable gaps requiring immediate attention. The overall recycling rate (25.1%) and segregation compliance (48.9%) are below global best practices, indicating deficiencies in infrastructure, incentives, and governance. Achieving the proposed 2030 targets recycling (50%), segregation (80%), and organic treatment (75%) will necessitate multi-level reforms. These include:

- Strengthening policy enforcement through EPR frameworks and mandatory segregation at source.
- Enhancing citizen participation via digital awareness platforms and localized campaigns.
- Expanding investment in decentralized composting, smart bins, and WtE facilities.

- Integrating the informal sector, which currently handles a large portion of recyclable materials but lacks formal recognition and protection.

Such interventions will ensure equity, efficiency, and long-term sustainability within the waste ecosystem.

Linking results with global sustainability goals

The observed outcomes resonate with international priorities under the Paris Agreement and the SDGs. The strong environmental performance across regions reflects growing awareness of ecological responsibility, yet the technological and socio-economic gaps underscore persistent inequalities in sustainability transitions (Soman, 2023). To align with SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), nations must adopt a circular economy paradigm where waste is not merely disposed of but reintegrated as a resource (Avilés-Palacios & Rodríguez-Olalla, 2021). Encouraging resource recovery, promoting eco-design, and implementing zero-waste city frameworks can contribute to reducing carbon footprints and enhancing resilience.

CONCLUSION

The findings of this study underscore that waste management in the 21st century is a complex yet transformative domain that demands integrated, multi-dimensional solutions. The results revealed that while urban centers demonstrate higher efficiency in collection, awareness, and technology adoption, peri-urban and semi-rural areas lag behind due to infrastructural and institutional limitations. The predominance of organic waste across all regions presents a valuable opportunity for composting and waste-to-energy generation, aligning with circular economy principles. However, socio-economic disparities, limited technological penetration, and low segregation compliance remain major barriers to sustainability. The Sustainable Waste Management Index (SWMI) highlighted the urgent need for balanced investment across environmental, socio-economic, and technological dimensions to achieve equitable progress. Therefore, future strategies must emphasize

decentralized waste systems, policy enforcement, public participation, and innovation-driven practices. By fostering synergy between governance, technology, and community engagement, societies can transition from a linear “take-make-dispose” model to a regenerative, circular system that ensures environmental integrity and long-term sustainability.

REFERENCES

1. Aiguobarueghian, I., Adanma, U. M., Ogunbiyi, E. O., & Solomon, N. O. (2024). Waste management and circular economy: A review of sustainable practices and economic benefits. *World Journal of Advanced Research and Reviews*, 22(2), 1708-1719.
2. Avilés-Palacios, C., & Rodríguez-Olalla, A. (2021). The sustainability of waste management models in circular economies. *Sustainability*, 13(13), 7105.
3. Badola, N., & Chauhan, J. S. (2021). Waste management: challenges and opportunities. *Bioremediation of Environmental Pollutants: Emerging Trends and Strategies*, 1-23.
4. Balu, R., Dutta, N. K., & Roy Choudhury, N. (2022). Plastic waste upcycling: a sustainable solution for waste management, product development, and circular economy. *Polymers*, 14(22), 4788.
5. Ebekozien, A., Aigbavboa, C., Emuchay, F. E., Aigbedion, M., Ogbaini, I. F., & Awo-Osagie, A. I. (2024). Urban solid waste challenges and opportunities to promote sustainable developing cities through the fourth industrial revolution technologies. *International Journal of Building Pathology and Adaptation*, 42(4), 729-750.
6. Elsaïd, S., & Aghezzaf, E. H. (2015). A framework for sustainable waste management: challenges and opportunities. *Management Research Review*, 38(10), 1086-1097.
7. Farooq, M., Cheng, J., Khan, N. U., Saufi, R. A., Kanwal, N., & Bazkiae, H. A. (2022). Sustainable waste management companies with innovative smart solutions: A systematic review and conceptual model. *Sustainability*, 14(20), 13146.
8. Jacobi, P. R., & Peres, U. D. (2016). Urban environmental management and governance: challenges for the 21st century. *disP-The Planning Review*, 52(2), 26-34.
9. Koop, S. H., & van Leeuwen, C. J. (2017). The challenges of water, waste and climate change in cities. *Environment, development and sustainability*, 19(2), 385-418.
10. Kumari, T., & Raghubanshi, A. S. (2023). Waste management practices in the developing nations: challenges and opportunities. *Waste management and resource recycling in the developing world*, 773-797.
11. Kurniawan, T. A., Liang, X., O'callaghan, E., Goh, H., Othman, M. H. D., Avtar, R., & Kusworo, T. D. (2022). Transformation of solid waste management in China: Moving towards sustainability through digitalization-based circular economy. *Sustainability*, 14(4), 2374.
12. Martin-Rios, C., Hofmann, A., & Mackenzie, N. (2021). Sustainability-oriented innovations in food waste management technology. *Sustainability*, 13(1), 210.
13. Owusu-Sekyere, E. (2019). Creative individuals, “Kaya Bola” exceptionalism and sustainable development in twenty-first century Ghana. *Journal of Global Entrepreneurship Research*, 9(1), 1-17.
14. Ravichandran, C., & Venkatesan, G. (2021). Toward sustainable solid waste management—challenges and opportunities. *Handbook of advanced approaches towards pollution prevention and control*, 67-103.
15. Roy, H., Islam, M. R., Tasnim, N., Roy, B. N., & Islam, M. S. (2024). Opportunities and challenges for establishing sustainable waste management. *Trash or Treasure: Entrepreneurial Opportunities in Waste Management*, 79-123.
16. Sadhukhan, J., Dugmore, T. I., Matharu, A., Martinez-Hernandez, E., Aburto, J., Rahman, P. K., & Lynch, J. (2020). Perspectives on “game changer” global challenges for sustainable 21st century: plant-based diet, unavoidable food waste biorefining, and circular economy. *Sustainability*, 12(5), 1976.
17. Shabani, T., Jerie, S., Mutekwa, T. V., & Shabani, T. (2024). Electronic waste: 21st century scenario in Zimbabwe—A review. *Circular Economy and Sustainability*, 4(2), 1269-1284.

18. Somani, P. (2023). Health impacts of poor solid waste management in the 21st century. In *Solid Waste Management-Recent Advances, New Trends and Applications*. IntechOpen.
19. Tripathi, A., Tyagi, V. K., Vivekanand, V., Bose, P., & Suthar, S. (2020). Challenges, opportunities and progress in solid waste management during COVID-19 pandemic. *Case Studies in Chemical and Environmental Engineering*, 2, 100060.
20. Wilson, D. C., & Velis, C. A. (2015). Waste management—still a global challenge in the 21st century: An evidence-based call for action. *Waste Management & Research*, 33(12), 1049-1051.

Conflict of Interest: No Conflict of Interest

Source of Funding: Author(s) Funded the Research

How to Cite: Boadi-Mensah, J. (2025). Waste Management in the 21st Century: Challenges, Opportunities, and Sustainable Solutions. *Journal of Sustainable Agriculture and Environmental Innovations*, 1(3), 1-11.